Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function.

نویسندگان

  • Qunhua Huang
  • Huanjiao Jenny Zhou
  • Haifeng Zhang
  • Yan Huang
  • Ford Hinojosa-Kirschenbaum
  • Peidong Fan
  • Lina Yao
  • Luiz Belardinelli
  • George Tellides
  • Frank J Giordano
  • Grant R Budas
  • Wang Min
چکیده

BACKGROUND Thioredoxin 2 (Trx2) is a key mitochondrial protein that regulates cellular redox and survival by suppressing mitochondrial reactive oxygen species generation and by inhibiting apoptosis stress kinase-1 (ASK1)-dependent apoptotic signaling. To date, the role of the mitochondrial Trx2 system in heart failure pathogenesis has not been investigated. METHODS AND RESULTS Western blot and histological analysis revealed that Trx2 protein expression levels were reduced in hearts from patients with dilated cardiomyopathy, with a concomitant increase in ASK1 phosphorylation/activity. Cardiac-specific Trx2 knockout mice develop spontaneous dilated cardiomyopathy at 1 month of age with increased heart size, reduced ventricular wall thickness, and a progressive decline in left ventricular contractile function, resulting in mortality due to heart failure by ≈4 months of age. The progressive decline in cardiac function observed in cardiac-specific Trx2 knockout mice was accompanied by the disruption of mitochondrial ultrastructure, mitochondrial membrane depolarization, increased mitochondrial reactive oxygen species generation, and reduced ATP production, correlating with increased ASK1 signaling and increased cardiomyocyte apoptosis. Chronic administration of a highly selective ASK1 inhibitor improved cardiac phenotype and reduced maladaptive left ventricular remodeling with significant reductions in oxidative stress, apoptosis, fibrosis, and cardiac failure. Cellular data from Trx2-deficient cardiomyocytes demonstrated that ASK1 inhibition reduced apoptosis and reduced mitochondrial reactive oxygen species generation. CONCLUSIONS Our data support an essential role for mitochondrial Trx2 in preserving cardiac function by suppressing mitochondrial reactive oxygen species production and ASK1-dependent apoptosis. Inhibition of ASK1 represents a promising therapeutic strategy for the treatment of dilated cardiomyopathy and heart failure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy

Objective(s):  The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...

متن کامل

Santamarine Inhibits NF-κB Activation and Induces Mitochondrial Apoptosis in A549 Lung Adenocarcinoma Cells via Oxidative Stress

Santamarine (STM), a sesquiterpene lactone component of Magnolia grandiflora and Ambrosia confertiflora, has been shown to possess antimicrobial, antifungal, antibacterial, anti-inflammatory, and anticancer activities. However, no study has yet been conducted to investigate the molecular mechanism of STM-mediated anticancer activity. In the present study, we found that STM inhibits growth and i...

متن کامل

Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis.

The mitochondrial enzyme monoamine oxidase (MAO), its isoform MAO-A, plays a major role in reactive oxygen species-dependent cardiomyocyte apoptosis and postischemic cardiac damage. In the current study, we investigated whether sphingolipid metabolism can account for mediating MAO-A- and reactive oxygen species-dependent cardiomyocyte apoptosis. In H9c2 cardiomyoblasts, MAO-A-dependent reactive...

متن کامل

Santamarine Inhibits NF-кB and STAT3 Activation and Induces Apoptosis in HepG2 Liver Cancer Cells via Oxidative Stress.

Sesquiterpene lactones have long been used in traditional Chinese medicines to treat inflammatory diseases. Recently, sesquiterpene lactone family compounds have been recognized as potential anticancer agents. Thus, it is necessary to explore new sesquiterpene lactones and their antitumor mechanism for cancer treatments. In the present study, we have explored the potential anti-cancer activity ...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 131 12  شماره 

صفحات  -

تاریخ انتشار 2015